Abstract

AbstractA series of poly(ethylene phthalate‐co‐terephthalate)s were synthesized by melt polycondensation of ethylene glycol (EG) with dimethyl phthalate (DMP) and dimethyl terephthalate (DMT) in various proportions. The DMT‐rich polymers were obtained with reasonably high molecular weights, whereas the DMP‐rich polymers were synthesized with relatively low molecular weights due to steric effects associated with the highly kinked DMP monomer. The compositions and thermal properties of the polymers were determined. The copolymers containing DMP in amounts of ≤ 21 mol% were crystallizable, whereas the other polymers were not. All the polymers exhibited a single glass transition temperature. Analysis of the measured glass transition temperatures and crystal melting temperatures confirmed that the DMT‐rich copolymers are random copolymers. The non‐isothermal crystallization behaviors of the DMT‐rich copolymers were investigated by calorimetry and modified Avrami analysis. The Avrami exponents n were found to range from 2.7 to 3.8, suggesting that the copolymers crystallize via a heterogeneous nucleation and spherulitic growth mechanism; that is, the incorporation of DMP units as the minor component does not change the growth mechanism of the copolymers. In addition, the activation energies of the crystallizations of the copolymers were determined; the copolymers were found to have higher activation energies than the PET homopolymer. Polym. Eng. Sci. 44:1682–1691, 2004. © 2004 Society of Plastics Engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call