Abstract

Proton conduction in novel anhydrous membranes based on host polymer, poly(4-vinylbenzylboronic acid), (P4VBBA) and phosphoric acid, (H3PO4) as proton solvent was studied. The materials were prepared by the insertion of the proton solvent into P4VBBA at different stoichiometric ratios to get P4VBBA·xH3PO4 composite electrolytes. Homopolymer and the composite materials were characterized by FT-IR, 11B MAS NMR and 31P MAS NMR. 11B MAS NMR results suggested that acid doping favors or leads to a four-coordinated boron arrangement. 31P MAS NMR results illustrated the immobilization of phosphoric acid to the polymer through condensation with boron functional groups (B–O–P and/or B–O–P–O–B). Thermogravimetric analysis (TGA) showed that the condensation of composite materials starts approximately at 140°C. An exponential weight loss above this temperature was attributed to intermolecular condensation of acidic units forming cross-linked polymer. The insertion of phosphoric acid into the matrix softened the materials shifting Tg to lower temperatures. The temperature dependence of the proton conductivity was modeled with Arrhenius relation. P4VBBA·2H3PO4 has a maximum proton conductivity of 0.0013S/cm at RT and 0.005S/cm at 80°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call