Abstract

Abstract In this study, we successfully synthesized a pyrazole derivative, specifically 4-phenylpiperidin-4-ol substituted pyrazole (CHP), through the reaction of Grignard reagents in combination with pyrazole. This newly synthesized molecule was subjected to a comprehensive evaluation for both its photophysical and biological applications. Notably, CHP exhibited promising invitro antifungal and antibacterial activities, primarily attributed to the presence of the 4-phenylpiperidin-4-ol moiety and resulting component contributed to an enhanced absorption rate of lipids, thereby improving the pharmacological activity of CHP. This correlation between structure and function was further supported by the outcomes of structure-activity relationship studies. Additionally, we conducted in silico studies to examine the molecular interactions of the synthesized molecule with key proteins, including DNA Gyrase, Lanosterol 14 α-demethylase, and KEAP1-NRF2. The results unveiled robust binding interactions at specific sites within these proteins, indicating potential therapeutic relevance. Furthermore, the photophysical properties of the synthesized compounds were thoroughly investigated using the ab-initio technique. This involved the determination of ground state optimization and HOMO-LUMO energy levels, all calculated with the DFT-B3LYP-6-31G(d) basis set. The assessment of the theoretically estimated HOMO-LUMO value provided insights into the global chemical reactivity descriptors, revealing that the synthesized molecule boasts a highly electronegative and electrophilic index. Taken together, our findings suggest that pyrazole derivatives with 4-phenylpiperidin-4-ol substitutions exhibit promising applications in both photophysical and biological contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.