Abstract

ZnCuTe nanowires have been successfully synthesized via template-assisted one step electrodeposition technique from an aqueous solution of zinc sulphate (ZnSO4·7H2O), copper sulphate (CuSO4·5H2O) and tellurium oxide (TeO2) at room temperature (303 K). Nanowires of diameter 200, 100 and 50 nm have been synthesized on copper and indium tin oxide coated glass substrates using track-etch polycarbonate membranes (Whatman). The morphologies and structures of electrodeposited ZnCuTe nanowires were characterized by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM confirmed the formation of nanowires and reveal that the morphologies of nanowires have diameter equal to the diameter of the templates used. The XRD pattern have shown a preferential growth of ZnCuTe nanowires along the (119) direction and the structure corresponding to hexagonal structure. Energy dispersive X-ray analysis confirmed that the zinc copper telluride nanowires are constituted of elements Zn, Cu and Te.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call