Abstract

AbstractNew methacrylate monomers containing phosphonic acid or both phosphonic and carboxylic acids were synthesized through the reaction of t‐butyl α‐bromomethyl acrylate with triethyl phosphite followed by the selective hydrolysis of the phosphonate or t‐butyl ester groups with trimethylsilyl bromide and trifluoroacetic acid. The copolymerization of these monomers with 2‐hydroxyethylmethacrylate was investigated with photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as a photoinitiator. Quantum mechanical tools were also used to understand the mechanistic behavior of the polymerization reactions of these synthesized monomers. The propagation and chain‐transfer reactions were considered and rationalized. A strong effect of the monomer structure on the rate of polymerization was observed. The polymerization reactivities of the monomers increased with decreasing steric hindrance and/or increasing hydrogen‐bonding capacity because of the hydrolysis of the phosphonate and the t‐butyl ester groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2574–2583, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.