Abstract
Nanoparticles of Fe3O4 with various sizes were synthesized from FeCl3 x 6H2O, FeCl2 x 4H2O and NaOH by coprecipitation process. The crystal structure, morphology, particle size and magnetic property of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). It was found that the molar ratio of ferrous to ferric played an important role in the formation of Fe3O4 nanoparticles. The particle mean diameter swelled from approximately 10 to approximately 20 nm with the molar ratio range from 1:2 to 6:1. The saturation magnetization and the coercivity increased correspondingly. The complex permittivity epsilon(r) and permeability mu(r) of the Fe3O4 mixture with paraffin were measured using vector network analysis. Values of epsilon(r), and mu(r) were used to determine the reflection loss at various sample thicknesses, based on a model of microwave absorbing layer backed by a metal plate. The minimal reflection loss or the dip shifts to a lower frequency region with increasing thickness. When the thickness is 5 mm, the minimal reflection loss of Fe3O4 synthesized with the molar ratio of 6:1 and paraffin wax composites reaches -35.1 dB at 5.2 GHz and -30.2 dB at 17.6 GHz, respectively. The minimal reflection loss is attributed to the thickness of the absorber approximates an odd number multiple of a quarter of the propagation wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.