Abstract

Highly regulated Fe3O4–polyelectrolyte-modified polyaniline (Fe3O4–PE@PANI) hollow sphere nanocomposites were successfully synthesized using an electrostatic self-assembly approach. The morphology and structure of the Fe3O4–PE@PANI nanocomposites were characterized using field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The results showed that the as-prepared nanocomposites had well-defined sizes and shapes, and the average size is about 500 nm. The assembly process was investigated. Magnetization measurements showed that the saturation magnetization of the nanocomposites was 38.6 emu g−1. It was also found that the Fe3O4–PE@PANI nanocomposites exhibited excellent reflection loss abilities and wide response bandwidths compared with those of PANI hollow spheres in the range 0.5–15 GHz. The Fe3O4–PE@PANI nanocomposites are, therefore, promising for microwave absorption applications.

Highlights

  • Combinations of conducting polymers and inorganic magnetic nanoparticles have recently attracted significant interest because the resultant materials exhibit both conductive and magnetic properties, and take advantage of the properties of both conducting polymers and inorganic nanoparticles

  • We describe a facile, general, eco-friendly, and effective approach to the fabrication of Fe3O4–PANI hollow sphere nanocomposites based on polyelectrolyte-modified PANI hollow spheres (PE@PANI)

  • Our strategy for the synthesis of Fe3O4–PE@PANI nanocomposites consisted of two main steps: (1)

Read more

Summary

Introduction

Combinations of conducting polymers and inorganic magnetic nanoparticles have recently attracted significant interest because the resultant materials exhibit both conductive and magnetic properties, and take advantage of the properties of both conducting polymers and inorganic nanoparticles. We explore the potential application of the as-prepared Fe3O4–polyelectrolyte-modified PANI hollow sphere (Fe3O4–PE@PANI) nanocomposites as microwave absorbers.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call