Abstract

A series of mixed, random cylindrical brush copolymers bearing polystyrene (PS) and poly(ε-caprolactone) (PCL) side chains were synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). These novel cylindrical brush copolymers have been characterized by means of nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). It was found that the mikto-armed cylindrical brush copolymers were microphase-separated in bulks and that the morphologies were dependent on the mass ratios of PS to PCL side chains. One of the cylindrical brush copolymers was employed to incorporate into epoxy thermoset to investigate effect of the mikto-armed cylindrical brush architecture on the reaction-induced microphase separation behavior. Depending on the concentration of the cylindrical brush in epoxy, the thermosets can display the morphologies with the spherical, worm-like and lamellar PS microdomains dispersing in continuous thermosetting matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.