Abstract

The synthesis, characterization, and metal-binding studies of chelate-functionalized dendrimers is reported. Salicylate, catecholate, and hydroxypyridinonate bidentate chelators have been coupled to the surface of both poly(propyleneimine) (Astramol) and poly(amidoamine) (Starburst, PAMAM) dendrimers up to the fifth generation (64 endgroups). A general method has been developed for the facile and high quality chromatographic purification of poly(propyleneimine) and poly(amidoamine) dendrimer derivatives. One- and two-dimensional (TOCSY) 1H NMR experiments and electrospray ionization mass spectrometry (ESI-MS) have confirmed the exhaustive coupling of these chelators to the primary amine functionalities of the dendrimers. Spectrophotometric titrations were used to investigate the metal binding ability of these macrochelates. Spectral analysis shows that ferric iron binding to these ligands is localized to the chelating endgroups. The ability of these dendritic polymers to bind large numbers of metal ions may lead to applications as metal sequestering agents for waste remediation technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.