Abstract
Abstract Pseudobinary high Pr-content Tb1−xPrx(Fe0.4Co0.6)1.93 (0.70≤x≤1.00) magnetostrictive alloys have been fabricated by a melt-spinning method. The effects of the composition, spinning, and annealing processes on the structure, thermal stability, and magnetic properties are investigated. At a wheel speed of v≤30 m/s, the as-spun ribbons consist of a mixture of (Tb,Pr)(Fe,Co)2 cubic Laves phase and some non-cubic phases. A single (Tb,Pr)(Fe,Co)2 phase with MgCu2-type structure is formed with the process for the speed of v≥35 m/s and subsequent annealing at 500 °C for 30 min. The lattice parameter of the Tb1−xPrx(Fe0.4Co0.6)1.93 Laves phase increases from 0.7354 nm for x=0.70 to 0.7384 nm for x=1.00 and approximately follows the linear Vegard's law. The Curie temperature decreases, while the saturation magnetization increases as increasing Pr content. The Pr-rich alloys possess the relatively lower coercivity and the faster saturation of magnetostriction as compared with the Tb-rich alloys, which can be understood by their lower magnetic anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.