Abstract

Herein, we test the hypothesis that neutral, heavy-atom stibine donors can increase the extent of spin-orbit coupling on light, 3d transition metal. To this end, we developed a novel synthetic route toward coordinating a paramagnetic 3d metal ion─cobalt(II)─with neutral stibine ligands. Such complexes have not been reported in the literature due to the weak σ donor strength of stibines and the hard-soft mismatch between a 3d metal and a 5p ligand─which herein has been overcome using alkylated Sb donors. Magnetometry of [(SbiPr2Ph)2Co(I)2] (1) reveals that the stibine complex 1 exhibits a higher magnitude D value (D = |24.96| cm-1) than the spectroscopically derived value for the corresponding phosphine complex 3 (D = -13.13 cm-1), indicative of large zero-field splitting. CASSCF/NEVPT2 calculations corroborate the experimental D values for 1 and 3, predicting D = -31.9 and -8.9 cm-1, respectively. A re-examination of magnetic parameters across the entire series [(ER3)2Co(X)2] (E = P → Sb; X = Cl → I) reveals that (i) increasingly heavy pnictogens lead to an increased X-Co-X bond angle, which is correlated with larger magnitude D values, and (ii) for a given X-Co-X bond angle, the D value is always higher in the presence of a heavy pnictogen as compared with a heavy halide. Ab initio ligand field theory calculations for 1 (stibine complex) and 3 (phosphine complex) reveal no substantial differences in spin-orbit coupling (ζ = 479.2, 480.2 cm-1) or Racah parameter (B = 947.5, 943.9 cm-1), an indicator of covalency. Thus, some "heavy atom effect" on the D value beyond geometric perturbation is operative, but its precise mechanism(s) of action remains obscure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call