Abstract

Eu(3+) doped CaGd4O7 phosphors have been newly synthesized using a solvothermal reaction method and sintered at 1400 °C. The phase, composition, morphologies, and photoluminescent properties of the phosphors have been well characterized by means of the X-ray diffraction (XRD) patterns, energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectroscopy, and decay curves, respectively. The XRD patterns of the as-prepared phosphors confirm their monoclinic structure and the FE-SEM images reveal flower-like morphology, formed through agglomeration. The calculated size of the crystallites was approximately 83 nm. The photoluminescence excitation (PLE) spectra of CaGd4O7:Eu(3+) phosphors consist of a broad band due to the charge transfer (CT) electronic transition, and several sharp peaks that can be attributed to the f-f transitions of Eu(3+) and Gd(3+). The PL spectra exhibited a stronger red emission corresponding to the (5)D0 --> (7)F2 transition. The CIE chromaticity coordinates of the phosphors were calculated and all the chromaticity coordinates have been placed in the red spectral region. These luminescent powders are expected to have potential applications for white light-emitting diodes (WLEDs) and optical display systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call