Abstract

LaOCl:Yb3+, Er3+ nanobelts were prepared by electrospinning combined with a double-crucible chlorination technique using NH4Cl as chlorinating agent. X-ray powder diffraction analysis indicated that LaOCl:Yb3+, Er3+ nanobelts were tetragonal with space group P4/nmm. Scanning electron microscope analysis and histograms revealed that width of LaOCl:Yb3+, Er3+ nanobelts was 6.12 ± 0.18 μm under the 95% confidence level, and the thickness was 113 nm. Transmission electron microscope observation showed that as-obtained LaOCl:Yb3+, Er3+ nanobelts were composed of nanoparticles. LaOCl:Yb3+, Er3+ nanobelts emitted strong green and red up-conversion emission centring at 523, 551 and 667 nm, respectively, attributed to 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4Il5/2 transitions of Er3+ under the excitation of a 980-nm diode laser (DL) excitation. Moreover, the near-infrared characteristic emission of LaOCl:Yb3+, Er3+ nanobelts was achieved under the excitation of a 532-nm laser. Commission Internationale de L'Eclairage analysis demonstrated that colour-tuned luminescence can be obtained by changing doping concentration of Yb3+ and Er3+, which could be applied in the fields of optical telecommunication and optoelectronic devices. The up-conversion luminescent mechanism and the formation mechanism of LaOCl:Yb3+, Er3+ nanobelts were also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call