Abstract

The Sr2SiO4:Eu3+, Dy3+ phosphors for white light emitting diodes (LEDs) were synthesized by the sol-gel method. The microstructure and luminescent properties of the obtained Sr2SiO4:Eu3+, Dy3+ particles were well characterized. The results demonstrate that the Sr2SiO4:Eu3+, Dy3+ particles, which have spherical morphology, emitted an intensive white light emission under excitation at 386 nm. The phosphors show three emission peaks: the blue emission at 486 nm corresponding to the 4F(9/2)-6H(15/2) transition of Dy3+, the yellow emission at 575 nm corresponding to the 4F(9/2)-6H(13/2) transition of Dy3+, and the red emission at 615 nm corresponding to the 5D0-7F2 transition of Eu3+. At the same time, the effect of Eu3+ concentration on the emission intensities of Sr2SiO4:Eu3+, Dy3+ was investigated in detail. The phosphors used for white LEDs were obtained by combining near ultraviolet (NUV) light (386 nm) with Sr2SiO4:0.04Dy3+, 0.01Eu3+ phosphors with the characteristic of Commission Internationale de l'Eclairage (CIE) chromaticity coordinate (x, y) of (0.33, 0.34), and color temperature Tc of 5,603 K. In addition, the effect of the charge compensators (Li+, Na+, and K+ ions) on the photoluminescence (PL) emission intensities were studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call