Abstract

Erbium-doped yttrium oxide nanotubes (Er3+:Y2O3 NTs) with 0−100% doping levels were synthesized by a hydrothermal procedure followed by a dehydration process from Er3+:Y(OH)3 NTs. The as-synthesized Er3+:Y2O3 nanotubes ranged from 100 to 400 nm in outer diameter and 2 to 5 μm in length with a hexagonal cross section. A time-dependent nanostructure evolution study was performed under hydrothermal conditions, and the effects of other processing parameters, including pH, concentration, and ionic strength of the precursor solution as well as the time span for adding the alkaline solution, were found to dictate the purity and morphology of the as-synthesized Er3+:Y(OH)3 nanostructures. A kinetics-controlled dissolution−recrystallization mechanism is proposed to explain the anisotropic growth of these hollow nanotubes from the hexagonal crystal structure of yttrium and erbium hydroxides. Outstanding room-temperature photoluminescence around 1535 nm was demonstrated for these Er3+:Y2O3 NTs, making them promising for optical amplifier, laser, and active waveguide applications in telecommunications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.