Abstract
This study successfully synthesized manganese-doped calcium zirconate phosphor and manganese-doped strontium zirconate phosphor using the sol-gel method. We employed X-ray powder diffraction and fluorescence spectroscopy to analyze the crystal structure and spectral characteristics of both phosphors. In X-ray powder diffraction analysis, data related to manganese-doped calcium zirconate phosphor and manganese-doped strontium zirconate phosphor were compared using X-ray diffraction comparison software to confirm the crystal structures of both phosphors. The crystal structure of manganese-doped calcium zirconate phosphor was in accordance with orthorhombic perovskites belonging to the Pnma {62} space group. The lattice parameters were a=5.762 Å, b=8.017 Å, and c=5.591 Å; c/a=0.97; volume=258.3 Å3, and density=4.611 g/cm3. The crystal structure of manganese-doped strontium zirconate phosphor conformed to orthorhombic perovskites belonging to the Pnma {62} space group, and the lattice parameters were a=5.818 Å, b=8.204 Å, c=5.797 Å; c/a=0.996; volume=276.7 Å3, and density=5.446 g/cm3. Fluorescence spectroscopy indicated that the primary broadband peak of manganese-doped calcium zirconate phosphor was located at 396.6 nm in the excitation spectrum corresponding to the 4T2(4G)4T1(4P) energy level transition. In the emission spectrum, the primary broadband peak was located at 596.6 nm, corresponding to the 4T2(4D)4T2(4G) energy level transition. For manganese-doped strontium zirconate phosphor, the primary broadband peak was located at 496.6 nm in the excitation spectrum and at 696.6 nm in the emission spectrum, corresponding to the 4T1(4G)4T2(4D) and 4E(4G)4T1(4G) energy level transitions, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.