Abstract

AbstractPolymer chains of PMMA were grown from nano titania (n‐TiO2) by the reversible addition‐fragmentation chain transfer polymerization process. The mechanism and kinetics of MMA polymerization from both solution and “grafted from” n‐TiO2 were studied. The RAFT agent, 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl) sulfanyl pentanoic acid, with an available carboxyl group was used to anchor onto the n‐TiO2 surface, with the SC(SC12H25) moiety used for subsequent RAFT polymerization of MMA to form n‐TiO2/PMMA nanocomposites. The functionalization of n‐TiO2 was determined by FTIR, XPS, partitioning studies, and thermal analysis. The livingness of the polymerization was verified using NMR and GPC, while the dispersion of the inorganic filler in the polymer was studied using electron microscopy, FTIR, and thermal analysis. The monomer conversion and molecular weight kinetics were explored for the living RAFT polymerization, both in solution and grafted from n‐TiO2, with first‐order kinetics being observed in both cases. Increased graft density on n‐TiO2 led to a lower rate of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3926–3937, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.