Abstract

Methyl [S-phenyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-α-d-mannopyranoside (R/S)S-oxide] uronate was synthesised from a thioglycoside mannosyl uronate donor in a 98% yield. By using one equivalent of meta-chloroperbenzoic acid (m-CPBA) as the sulphur oxidant, a smooth conversion to the diastereomeric sulfoxide products was achieved. The product was fully characterized by 1H, 13C and 2D NMR alongside MS analysis.

Highlights

  • Glycosyl sulfoxides have been successfully used as glycosyl donors within carbohydrate synthesis ever since a report by Kahne and co-workers in which they activated an anomeric sulfoxide with triflic anhydride to glycosylate a deoxycholic ester derivative [1]

  • Glycosyl sulfoxides are traditionally formed by the careful oxidation of a parent thioglycoside component to form an S-oxide, typically by using meta-chloroperbenzoic acid (m-CPBA) as the oxidant, other methods, including OXONE®, have recently been developed [3,4]

  • Whilst the oxidation generally proceeds to yield diastereomeric mixtures, stereoselective sulfoxidations have been reported for particular classes of parent thioglycosides, e.g., α-mannopyranose thioglycosides [5,6,7]

Read more

Summary

Introduction

Glycosyl sulfoxides have been successfully used as glycosyl donors within carbohydrate synthesis ever since a report by Kahne and co-workers in which they activated an anomeric sulfoxide with triflic anhydride to glycosylate a deoxycholic ester derivative [1]. Glycosyl sulfoxides are traditionally formed by the careful oxidation of a parent thioglycoside component to form an S-oxide, typically by using meta-chloroperbenzoic acid (m-CPBA) as the oxidant, other methods, including OXONE® , have recently been developed [3,4]. Whilst the oxidation generally proceeds to yield diastereomeric mixtures, stereoselective sulfoxidations have been reported for particular classes of parent thioglycosides, e.g., α-mannopyranose thioglycosides [5,6,7]. Uronic acids, where the C6 pyranosyl carbon is at the carboxylic acid oxidation level, have been prepared as glycosyl sulfoxide donors for the synthesis of oligosaccharide targets that contain d-glucuronic acid [8]. As part of a wider project concerning the chemical synthesis of alginate oligosaccharides [9], we required access to a d-mannuronic acid glycosyl sulfoxide building block (3). Provide here our record of its synthesis and full characterization from S-phenyl thioglycoside (2)

Results
General
C NMR signals were
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call