Abstract

The N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide (1a) and N-phenyl-exo-endo-norbornene-5,6-dicarboximide (1b) monomers were synthesized and copolymerized via ring opening metathesis polymerization (ROMP) using bis(tricyclohexylphosphine)benzylidene ruthenium(IV) dichloride (I) and tricyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene]ruthenium dichloride (II). Experiments, at distinct monomer molar ratios, were carried out using catalyst I in order to determine the copolymerization reactivity constants by applying the Mayo-Lewis and Fineman-Ross methods. Moreover, both catalysts were used to produce random and block high molecular weight copolymers of 1a with 1b and 1a with norbornene (NB) which were further hydrogenated using a Wilkinson’s catalyst. Then, the saturated copolymers underwent a nucleophilic aromatic substitution by reacting with sodium 4-hydroxybenzenesulfonate dihydrate to generate new polynorbornene ionomers bearing fluorinated pendant benzenesulfonate groups. A thorough study on the electrochemical characteristics involving electromotive forces of concentration cells and proton conductivity of cation-exchange membranes based on a block copolymer of norbornene dicarboximides containing structural units with phenyl and fluorinated pendant benzenesulfonate moieties is reported. The study of electromotive forces (emf) of concentration cells with the sulfonated membrane of copolymer 8 separating electrolyte solutions of different concentration indicate that the membranes exhibit high permselectivity to protons and sodium ions at moderately low concentrations. In principle, these results suggest that the membranes can be considered candidates for ionic separation applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.