Abstract

The increase in the prevalence of antibiotic-resistant pathogens leads to a decrease in the number of antimicrobial agents for the treatment of infections and prompts researchers to search for new effective antimicrobial drugs. This study reports the synthesis of novel triphenylphosphonium-functionalized substituted pyrimidines and invitro evaluation of their antibacterial and antibiofilm activity. Most of the synthesized derivatives showed high antibacterial activity (MIC = 0.39-1.56 μg/mL) against the methicillin-resistant strain of S. aureus 222. Compounds 2a and 11 exhibited a high level of antibiofilm activity against S. aureus 222 and E. coli 311. The triphenylphosphonium-containing pyrimidines 11 and 2a reduced S. aureus 222 biofilm formation by 99.1% and 95.8%, respectively. In addition, compound 2a was the most active against E. coli 311 biofilm formation (the biomass decreased by 98.4%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call