Abstract

Cu5V2O10 is prepared by solid-phase synthesis via sequential air calcination of a stoichiometric CuO-V2O5 mixture. Its high-temperature heat capacity is measured by differential scanning calorimetry. The thermodynamic properties (enthalpy and entropy changes and scaled Gibbs free energy) are calculated using the experimental dependence Cp =f(T). It is shown that specific heat capacity correlates with the composition of oxides in the CuO−V2O5 system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call