Abstract

Pentagonal cyclization at the bay positions of armchair-edged graphenic cores can build molecular bowls without the destruction of hexagonal lattices. However, this synthesis remains challenging due to unfavorable strain and the multiple reactions required. Here, we show that a new type of graphenic molecular bowl with a depth of 1.7 Å and a diameter of 1.2 nm is constructed by sextuple Se annulation at the bay positions of armchair-edged hexa-peri-hexabenzocoronene. This graphenic bowl is functionalized with phenylseleno groups that stack into a discrete bilayer dimer in solution. Such a dimer exhibits high stability and survives in the gas phase after laser ablation. Strikingly, the asymmetric one-dimensional supramolecular columns of graphenic bowl with coherent stacking configuration are observed in the solid state, which results in a strong second harmonic generation with prominent polarization dependence. Our findings present a concise synthesis of a giant molecular bowl with a graphenic core and demonstrate the unique supramolecular assembly of extended graphenic bowls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call