Abstract

Studies on the inhibition mechanism of acetogenins, the most potent inhibitors of complex I, are useful to elucidate the structural and functional features of the terminal electron-transfer step of this enzyme. We synthesized acetogenin mimics that possess two alkyl tails without a gamma-lactone ring, named Deltalac-acetogenin, and examined their inhibitory action on bovine heart mitochondrial complex I. Unexpectedly, the Deltalac-acetogenin carrying two n-undecanyl groups (compound 3) elicited very potent inhibition comparable to that of bullatacin. The inhibitory potency of compound 3 markedly decreased with shortening the length of either or both alkyl tails, indicating that symmetric as well as hydrophobic properties of the inhibitor are important for the inhibition. Both acetylation and deoxygenation of either or both of two OH groups adjacent to the tetrahydrofuran (THF) rings resulted in a significant decrease in inhibitory potency. These structural dependencies of the inhibitory action of Deltalac-acetogenins are in marked contrast to those of ordinary acetogenins. Double-inhibitor titration of steady-state complex I activity showed that inhibition of compound 3 and bullatacin are not additive, though the inhibition site of both inhibitors is downstream of iron-sulfur cluster N2. Our results indicate that the mode of inhibitory action of Deltalac-acetogenins differs from that of ordinary acetogenins. Therefore, Deltalac-acetogenins can be regarded as a novel type of inhibitor acting on the terminal electron-transfer step of complex I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.