Abstract

Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging biomedical optical imaging modality that leverages Cerenkov luminescence, primarily generated by β-emitting radioisotopes, to excite fluorophores that offer near-infrared emissions with optimal tissue penetrance. Dual-functionalized immunoconjugates composed of an antibody, a near-infrared fluorophore, and a β-emitting radioisotope have potential utility as novel SCIFI constructs with high specificity for molecular biomarkers of disease. Here, we report the synthesis and characterization of [89Zr]Zr-DFO-trastuzumab-BOD665, a self-excitatory HER2-specific "immunoSCIFI" probe capable of yielding near-infrared fluorescence in situ without external excitation. The penetration depth of the SCIFI signal was measured in hemoglobin-infused optical tissue phantoms that indicated a 2.05-fold increase compared to 89Zr-generated Cerenkov luminescence. Additionally, the binding specificity of the immunoSCIFI probe for HER2 was evaluated in a cellular assay that showed significantly higher binding to SKBR3 (high HER2 expression) relative to MDA-MB-468 (low HER2) breast cancer cells based on measurements of total flux in the near-infrared region with external excitation blocked. Taken together, the results of this study indicate the potential utility of immunoSCIFI constructs for interrogation of molecular biomarkers of disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call