Abstract

The chemistry and biology of phosphorylated inositols have become intense areas of research during the last two decades due to their involvement in various cellular signaling processes. However, the metabolic instability by phosphatases or kinases and poor penetration make it difficult to become a drug used in the clinic. The bioreversible protection technique can enhance membrane penetration characteristics and increase the stability of phosphorylated inositols against enzymatic degradation and is applied widely in drug discovery and development. In this paper, we described the design and synthesis of 22 bioreversible phosphotriester inositols, along with the initial antitumor activity results. Most compounds exhibited significant cytotoxic activity against human cancer cell lines A549, MDA-MB-231 and HeLa, but lower cellular toxicity on normal cell MCF10A in comparison with Cisplatin. These compounds can be used as probes to study the mechanism of intracellular signal transduction mediated by phosphate inositol or as leads of phosphate inositol drugs in the clinic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.