Abstract

Background: Design, identification, and synthesis of new antimicrobial agents along with preventive proceedings are essential to confront antibiotic-resistant pathogenic bacteria. Heterocyclic Schiff bases are biologically important compounds whose antimicrobial potentials have been proven to bacterial and fungal pathogens. Objectives: In this study, some quinoline Schiff bases were synthesized from condensation of 2-chloro3-quinolinecarboxaldehyde and aniline derivatives. Their inhibitory activities were evaluated against 6 gram-positive and 2 gram-negative bacterial pathogens. Methods: Disc diffusion, broth microdilution, and time-kill tests were applied according to the CLSI guidelines to determine IZD, MIC, and MBC values. Results: 2-Chloro-3-quinolinecarboxaldehyde Schiff bases could inhibit the growth of bacteria with IZDs of 7.5-19.8 mm, MICs of 256-2048 μg mL-1, and MBCs of 512 to ≥2048 μg mL-1. Conclusion: Moderate antibacterial effects were observed with heterocyclic Schiff bases. Complexation and structural changes can improve their antimicrobial properties.

Highlights

  • Design, identification, and synthesis of new antimicrobial agents along with preventive proceedings are essential to confront antibiotic-resistant pathogenic bacteria

  • As shown in Scheme 1, quinoline Schiff bases 4a-g were synthesized via condensation of 2-chloroquinoline-3carbaldehyde (2) and aniline derivatives 3a-g in the absence of any catalyst

  • The blocking effects against E. faecalis and S. aureus were observed with only quinoline Schiff base 4c containing 2-hydroxyaniline substituent

Read more

Summary

Introduction

Identification, and synthesis of new antimicrobial agents along with preventive proceedings are essential to confront antibiotic-resistant pathogenic bacteria. Heterocyclic Schiff bases are biologically important compounds whose antimicrobial potentials have been proven to bacterial and fungal pathogens. Objectives: In this study, some quinoline Schiff bases were synthesized from condensation of 2-chloro3-quinolinecarboxaldehyde and aniline derivatives. Their inhibitory activities were evaluated against 6 gram-positive and 2 gram-negative bacterial pathogens. Results: 2-Chloro-3-quinolinecarboxaldehyde Schiff bases could inhibit the growth of bacteria with IZDs of 7.5-19.8 mm, MICs of 256-2048 μg mL-1, and MBCs of 512 to ≥2048 μg mL-1. Quinoline nucleus is an essential part of the chemical structure of natural products, and pharmaceutical and biologically active compounds (Figure 1). Cinchocaine or dibucaine is a surface anesthetic with high toxicity that has been restricted to spinal anesthesia (6)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call