Abstract

Staphylococcus aureus wall teichoic acids (WTAs) are attractive targets for antibacterial vaccine development. In this study, three core glycosylated WTA structure, including α-1,4-GlcNAc, β-1,4-GlcNAc and β-1,3-GlcNAc modified ribitol phosphates containing a linker are chemically synthesized and conjugated with tetanus toxin (TT) carrier protein as vaccine candidates. In vivo immunological studies demonstrate that the synthesized glycosylated WTAs display high immunogenicity and all conjugates provoke strong immune responses and elicit high levels of specific IgG antibodies against the GlcNAc-modified WTA. Furthermore, antibodies elicited by the vaccine candidates remain the capability to recognize S. aureus cells and display significant opsonophagocytic activity to clear S. aureus. This study demonstrates that the core structure of glycosylated WTAs are effective antigens for constructing anti-S. aureus vaccines to prevent and control S. aureus infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call