Abstract

Despite numerous efforts to develop FGFR inhibitors for cancer treatment, the widespread clinical application of currently available FGFR inhibitors has been significantly limited due to the serious side effects caused by poor selectivity and resistance. PROTAC technology, a method for protein degradation, has shown notable advantages over conventional inhibitors. In our study, we coupled Erdafitinib, a pan-FGFR inhibitor, with a CRBN binder to synthesize and identify an effective FGFR2 degrader, N5. Our findings demonstrated that N5 displayed notable specificity for FGFR2 and outstanding enzyme inhibitory capabilities, achieving an IC50 value of 0.08 nM against FGFR2, and strong antiproliferative activity, maintaining an inhibitory rate above 50% on gastric cancer cells at a concentration of 0.17 nM. Mechanistically, N5 induced gastric cancer cell cycle arrest at the G0/G1 phase and apoptosis by decreasing the levels of FGFR downstream proteins. Moreover, N5 demonstrated favorable pharmacokinetic characteristics with a bioavailability of 74.8% when administered intraperitoneally and effectively suppressed the growth of SNU16 xenograft tumors, exhibiting greater potency compared to the parental inhibitor Erdafitinib. This study lays the groundwork for developing and potentially applying therapeutic agents targeting FGFR2 degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.