Abstract
The limited availability of petroleum resources motivates the research towards value-added products production from bio-resources. This study reports the synthesis of glycerol and succinic acid-based polyesters and their detailed characterization. The modification of poly (glycerol succinate) was done by using other diacids like glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. The sysnthesized polyesters were characterized using various techniques such as thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The addition of different dicarboxylic acids to poly (glycerol succinate) based co-polyesters increased the thermal stability of poly (Glycerol succinate). Glass transition temperatures were obtained in the range of −17.2 to −22.5 °C and it increased with chain length. The progress of reaction was monitored by determining acid number, ester number, and degree of esterification. The hydrolytic degradation of polyesters was carried out in acidic and basic medium. The polyesters was found to degrade under basic conditions whereas no weight loss of poly (glycerol succinate) was found under acidic conditions. Particularly, about 40% of poly (glycerol succinate) was degraded within 24 h under basic conditions (pH = 12). The analysis of morphology of polyesters during degradation showed that the increase in hydrolysis time increased the heterogeneity in polyester matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.