Abstract

The four components of Portland cement; dicalcium silicate (Ca2SiO4), tricalcium silicate (Ca3SiO5), tricalcium aluminate (Ca3Al2O6), and tetracalcium aluminate iron oxide (Ca4Al2Fe3O10), were made by the PVA complexation process. Powders prepared by this new method can make relatively high yields of pure, synthetic, cement components of nano or sub-micron crystallite dimensions, high specific surface area, and extremely high reactivity at relatively low calcining temperatures in comparison with conventional methods. The above advantages can enhance setting speed, increase strength, and lead to other desirable characteristics of Portland cement. Optimum synthesis conditions, such as PVA content, degree of polymerization of the PVA, and calcination temperature, were determined for each component. Hydration speed and strength of the synthesized, mixed cement paste were also studied at room temperature (25°C). The powders and hydration behavior were characterized by microstructural examination (XRD, SEM) and specific surface areas were measured by nitrogen gas adsorption BET. DSC and Instron were used to study setting speed and compression strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.