Abstract

Three structurally diverse types of the protected pyrrolidine nucleoside phosphonates were prepared as the monomers for the introduction of pyrrolidine nucleotide units into modified oligonucleotides on the solid phase. Two different chemistries were used for incorporation of modified and natural units: the phosphotriester method for the former, i.e., monomers containing N-phosphonoalkyl and N-phosphonoacyl moieties attached to the pyrrolidine ring nitrogen atom, and phosphoramidite chemistry for the latter. Since the synthesized pyrrolidine nucleoside phosphonic acids are close mimics of the 3′-deoxynucleoside 5′-phosphates, the incorporation of one modified unit into oligonucleotides gives rise to one 2′,5′ internucleotide linkage. A series of nonamers containing two or three modified units, as well as the fully modified adenine 15-mer, were synthesized in reverse order, i.e., from the 5′ to the 3′ end of the strand. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a destabilizing effect of the introduced modification. The modified adenine homooligonucleotide, was found to form the most stable complex with oligothymidylate of all the tested modified oligonucleotides in terms of ΔTm per modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.