Abstract

Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.

Highlights

  • Nanostructures have received comprehensive attention owing to their novel optical, electrical, catalytic and magnetic properties and their potential applications in nanoscale electronic, sensing, mechanical and magnetic devices [1, 2], and information storage systems [3,4,5,6].Y

  • The length of the Ni nanostructures increases with the electrodeposition times

  • Our results fully demonstrate that magnetic materials can form nanotubes and nanowires under appropriate synthesis conditions

Read more

Summary

Introduction

Nanostructures have received comprehensive attention owing to their novel optical, electrical, catalytic and magnetic properties and their potential applications in nanoscale electronic, sensing, mechanical and magnetic devices [1, 2], and information storage systems [3,4,5,6].Y. Keywords Nanotubes Á Nanowires Á Growth mechanism Á Electrodeposition We report the successful fabrication of ordered Ni nanotube and nanowire arrays using anodic aluminum oxide (AAO) templates by changing electrodeposition conditions, and propose a growth mechanism for Ni nanotubes and nanowires.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.