Abstract

The synthesis of chain-modified analogues of the naturally-occurring glycosidase inhibitor, salacinol, and its selenium analogue, blintol is described. The modification consists of a frame shift of the sulfate moiety by one carbon atom in the zwitterionic structures as well as an extension of the acyclic chain to five carbons. The target molecules were synthesized by alkylation of 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio (or seleno)-d-arabinitol at the ring heteroatom by 2,3,5-tri-O-p-methoxybenzyl d- or l-xylitol-1,4-cyclic sulfate, followed by deprotection with trifluoroacetic acid. Two of the four compounds inhibit recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose oligosaccharides in the small intestine, with Ki values of 20±4 and 53±5μM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.