Abstract

AbstractPhysical and gas transport properties of hyperbranched polyimide (HBPI)—silica hybrid membranes prepared with a dianhydride monomer, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), and triamine monomers, 1,3,5‐tris(4‐aminophenoxy)triazine (TAPOTZ), and 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), were investigated and compared with those of 6FDA‐TAPOB HBPI system synthesized from 6FDA and 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB). Glass transition and 5% weight‐loss temperatures of the 6FDA‐based HBPI–silica hybrid membranes were increased with increasing silica content. 6FDA‐TAPOTZ HBPI system, however, showed relatively low 5% weight‐loss temperatures, suggesting thermal instability of triazine‐ring in the TAPOTZ moiety. CO2/CH4 permselectivity of the HBPI–silica hybrid membranes were increased with increasing silica content, tending to exceed the upper bound for CO2/CH4 separation. This result indicated that free volume elements effective for CO2/CH4 separation were created by the incorporation of silica for the HBPI–silica hybrid systems. Especially, 6FDA‐TAPB HBPI system had high gas permeabilities and CO2/CH4 separation ability, arising from high fractional free volume and characteristic size and distribution of free volume elements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.