Abstract

Tridegin, a 66-mer peptide isolated from the leech Haementeria ghilianii, is a potent inhibitor of the coagulation factor XIIIa. This paper describes the chemical synthesis of tridegin by two different strategies--solid-phase assembly and native chemical ligation--both followed by oxidation in solution phase. Tridegin and truncated analogues were examined for their activity and revealed a particular importance of the C-terminal region of the parent peptide. Based on these studies a minimal sequence required for factor XIIIa inhibition could be identified. Our data revealed that the glutamine residue at position 52 (Q52) of tridegin most likely binds to the active site of factor XIIIa and was therefore suggested to react with the enzyme. The function of the N-terminal region is also discussed, as the isolated C-terminal segment of tridegin lost its inhibitory activity rapidly in the presence of factor XIIIa, whereas this was not the case for the full-length inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.