Abstract

Fluorescent unnatural α-amino acids are widely used as probes in chemical biology and medicinal chemistry. While a variety of structural classes have been developed, there is still a requirement for new environmentally sensitive analogues that can closely mimic proteinogenic α-amino acids. Here, we report the synthesis and fluorescent properties of highly conjugated, benzotriazole-derived α-amino acids designed to mimic l-tryptophan. Alkynyl-substituted analogues were prepared using three key steps, nucleophilic aromatic substitution with a 3-aminoalanine derivative, benzotriazole formation via a one-pot diazotization and cyclization process, and a Sonogashira cross-coupling reaction. E-Alkenyl-substituted benzotriazoles were accessed by stereoselective partial hydrogenation of the alkynes using zinc iodide and palladium catalysis. The alkynyl analogues were found to possess higher quantum yields and stronger brightness and, a solvatochromic study with the most fluorogenic α-amino acids demonstrated sensitivity to polarity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call