Abstract

The article comprises synthesis of calyx[4]-oxa-crown, and calix[4]-thia-crown compounds containing nitrile groups (3a, 3b) and amino groups (4a, 4b) and their corresponding oxime derivatives (5a, 5b) and liquid-liquid extraction studies of these compounds. The oxime derivatives of compounds (5a, 5b) have been synthesized by reacting of di-n-butylamino derivatives of calix[4]-oxa-crown, and calix[4]-thia-crown compounds (4a, 4b) with amphi-chloroglyoxime in methanol-THF. Their cation and anion transfer studies were performed by using liquid-liquid extraction procedure. It has been concluded from the observations that the compound 3a shows a good extraction behavior toward Na+ ion in the presence of other metal cations. Whereas, its oxime derivatives transfers all of the metal cations used in the liquid-liquid extraction studies.

Highlights

  • With the development of technology, environmental pollution has become an important problem today

  • A number of studies have been carried out on the synthesis of new macrocyclic ligands that can be complex with toxic metals and anions, which play an important role in environmental contamination [5] [6] [7]

  • The first member, calixcrown compound was reported as crown ethers are combined through the bridging of the phenolic oxygen atoms of the calixarene early as 1983 and in this connection various calix[4]crowns have been reported with their host-guest properties in metal complexation, metal extraction, metal transportation, molecular switches and in ion sensing devices [12] [13] [14] [15]

Read more

Summary

Introduction

With the development of technology, environmental pollution has become an important problem today. The first member, calixcrown compound was reported as crown ethers are combined through the bridging of the phenolic oxygen atoms of the calixarene early as 1983 and in this connection various calix[4]crowns have been reported with their host-guest properties in metal complexation, metal extraction, metal transportation, molecular switches and in ion sensing devices [12] [13] [14] [15] Due to their highly selective metal ion recognition, which depends on the crown size, on the macrocyclic conformation (especially for calix[4]arene derivatives) and on the substituents at the upper or lower rims, the design and synthesis of these molecules have been very developed in the last few years [16]-[21]. Because these compounds have different cavity sizes and different donor atoms, which make them potential hosts for the complexation with metal ions, neutral guests and the formation of charge transfer complexes

Apparatus
Materials
Synthesis
Liquid-Liquid Extraction Procedures
Findings
Result and Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.