Abstract

Here, the synthesis of photochromic hydrogen bond-assembled [2]rotaxanes using bis-fumarate as a thread for the first time is reported. In fact, photochromic 1,3-diazabicyclo[3.1.0]hex-3-ene moieties were used as stoppers and two-atom spacers managed good binding sites for the tetralactam macrocycles in clipping reactions. Moreover, the yields of photochromic [2]rotaxanes highly depended on the NO2 substituent stoppers. While the thread with a para –NO2 substituent as stopper units was shown to be an excellent template for the synthesis of photochromic [2]rotaxanes. The structures of the [2]rotaxanes are established clearly in solution by chemical shifts of the 1H 13C NMR signals and UV–Vis spectra. A pronounced bathochromic shift was occurred in the excitation wavelength of photochoromic [2]rotaxanes compared with the absorption band of photochromic threads. Therefore, these organizations can be applied in light-driven molecular switches and motors. The reversible transformation of trans and cis geometric photoisomers under UV radiation was identified. In other efforts, the possibility of the process of trans to cis interconversion of the fumarate linker under UV irradiation has been examined computationally and it has appeared that it may cause the transverse of the bis-fumarate linker inside the tetralactam macrocycle to some extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.