Abstract

This paper encapsulates the synthesis of zinc oxide (ZnO) nanoparticles with different weight percentages of praseodymium oxide (PrO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ), by low-cost environmentally friendly solution combustion synthesis (SCS) method. In this procedure metal nitrates are used as oxidizer with glycine as fuel for the synthesis of nanoparticles. This procedure involves propagation of self-sustained exothermic reactions in aqueous or sol-gel media. The structural, morphological and optical properties of the prepared nanoparticles are examined by powder X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM) and ultra violet visible near infra-red (UV - Vis NIR) spectroscopy. The XRD patterns of the samples confirm that the average crystalline size of the praseodymium added ZnO samples decreases from 37.32 nm to 18.776 nm, when the praseodymium content increases from 5 to 20% by weight. The HRTEM and Selected Area Electron Diffraction (SAED) data clearly show the morphology and structure of the samples. Furthermore, the UV - vis spectra validate the presence of praseodymium content in the ZnO samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call