Abstract

AbstractA series of superabsorbent polymers (SAP) were synthesized by free radical thermal copolymerization of acrylic acid and N‐isopropyl acrylamide monomers using trimethylolpropane triacrylate as crosslinker. They were characterized by FT‐IR and thermal stability (TGA/DTG), and evaluated for their water and fertilizer uptake and release characteristics under different crosslinker levels, temperature, pressure, and pH. The observed maximum absorption of water by the SAP was 1130 g/g of polymer. The release was modeled which showed a non‐Fickian mechanism. The water uptake of SAP was correlated with the average molecular weight between the crosslinks and crosslink density. Analysis of the weight loss data from TG in air revealed a zero order kinetics for the initial degradation step with an activation energy (AE) of 70.8 kJ/mol. The AEs for water uptake and release for thermal degradation were also determined through Arrhenius plots. The results inferred that the synthesized SAP can be exploited for commercial agricultural applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.