Abstract

Integrin α5β1 is an important therapeutic target that can be inhibited using an aldolase antibody (Ab)-derived chemical-Ab (chem-Ab) for the treatment of multiple human diseases, including cancers. A fairly optimized anti-integrin α5β1 chem-Ab 38C2-4e was obtained using an in situ convergent chemical programming (CP) approach, which minimized the time and effort needed to develop a chem-Ab. Multiple Ab-programming agents (PAs) 4a-e could be prepared rapidly using the Cu-catalyzed alkyne-azide coupling (Cu-AAC) reaction of an α5β1 inhibitor 2 with multiple linkers 3a-e, either before or after conjugating the linkers into Ab 38C2 binding sites. In these two-steps processes, the products after step 1 can be used in the next step without performing an extensive purification or analysis of the Ab-PAs or Ab-linker conjugates affording chem-Abs 38C2-(4a-e). Flow cytometry assay was used to determine the binding of the chem-Abs to U87 human glioblastoma cells expressing α5β1 integrin and identify 38C2-3e as the strongest binder. Further studies revealed that 38C2-3e strongly inhibited proliferation of U87 cells and tube formation of HUVEC in the matrigel assay, as well as tumor growth and metastasis of 4T1 cells in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call