Abstract

Trypanothione reductase (TR) is found in the trypanosomatid parasites, where it catalyses the NADPH-dependent reduction of the glutathione analogue, trypanothione, and is a key player in the parasite’s defenses against oxidative stress. TR is a promising target for the development of antitrypanosomal drugs; here, we report our synthesis and evaluation of compounds 3–5 as low micromolar Trypanosoma cruzi TR inhibitors. Although 4 and 5 were designed as potential irreversible inhibitors, these compounds, as well as 3, displayed reversible competitive inhibition. Compound 3 proved to be the most potent inhibitor, with a Ki = 2 µM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.