Abstract

The synthesis and evaluation of novel biodegradable poly(organophosphazenes) (3-6) namely poly[bis-(2-propoxy)]phosphazene (3) poly[bis(4-acetamidophenoxy)]phosphazene (4)poly[bis(4-formylphenoxy)]phosphazene (5) poly[bis(4-ethoxycarbonylanilino)]phosphazene (6) bearing various hydrophilic and hydrophobic side groups for their application as nonocarrier system for antimalarial drug delivery is described. The characterization of polymers was carried out by IR, (1)H-NMR and (31)P-NMR. The molecular weights of these novel polyphosphazenes were determined using size exclusion chromatography with a Waters 515 HPLC Pump and a Waters 2414 refractive index detector. The degradation behavior was studied by 200mg pellets of polymers in phosphate buffers pH5.5, 6.8 and 7.4 at 37°C. The degradation process was monitored by changes of mass as function of time and surface morphology of polymer pellets. The developed combined drugs nanoparticles formulations were evaluated for antimalarial potential in P. berghei infected mice. These polymers exhibited hydrolytic degradability, which can afford applications to a variety of drug delivery systems. On the basis of these results, the synthesized polymers were employed as nanocarriers for targeted drug delivery of primaquine and dihydroartemisinin. The promising in vitro release of both the drugs from nanoparticles formulations provided an alternative therapeutic combination therapy regimen for the treatment of drug resistant malaria. The nanoparticles formulations tested in resistant strain of P. berghei infected mice showed 100% antimalarial activity. The developed nanocarrier system provides an alternative combination regimen for the treatment of resistant malaria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.