Abstract

Dithiolate ligands have recently been used in ruthenium-catalyzed olefin metathesis and have provided access to a kinetically E selective pathway through stereoretentive olefin metathesis. The typical dithiolate used is relatively simple with low steric demands imparted on the catalyst. We have developed a synthetic route that allows access to sterically demanding dithiolate ligands. The catalysts generated provided a pathway to study the intricate structure–activity relationships in olefin metathesis. It was found that DFT calculations can predict the ligand arrangement around the ruthenium center with remarkable accuracy. These dithiolate catalysts proved resistant to ligand isomerization and were stable even under forcing conditions. Additionally, catalyst initiation and olefin metathesis studies delivered a better understanding to the interplay between dithiolate ligand structure and catalyst activity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.