Abstract

A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.

Highlights

  • Food pathogens are responsible for significant economic losses in the food industry and cause different human diseases [1]

  • Biofilms are sessile communities of bacterial cells attached to each other and/or to surfaces or interfaces, which are embedded in a self-produced matrix of extracellular polymeric substances (EPS) that play an important role in protecting microorganisms against adverse environmental conditions, including the action of most antimicrobial agents [7]

  • We report enzymatic and chemical synthetic procedures applied to obtain sugar-fatty acids esters, based on an esterification reaction between monosaccharide, or disaccharide sugars and aliphatic (C8, C10, C12, C14 and C16 saturated fatty acids) or aromatic acids

Read more

Summary

Introduction

Food pathogens are responsible for significant economic losses in the food industry and cause different human diseases [1]. Bacteria and fungi can be toxic for humans, mainly due to the production of poisonous substances such as enterotoxins and mycotoxins, which can be found in contaminated food. One of the bacterial growth modes is the development of the biofilm, which can be considered as a basic survival strategy in a wide range of environmental, industrial and clinical settings [6]. Biofilms are sessile communities of bacterial cells attached to each other and/or to surfaces or interfaces, which are embedded in a self-produced matrix of extracellular polymeric substances (EPS) that play an important role in protecting microorganisms against adverse environmental conditions, including the action of most antimicrobial agents [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.