Abstract

In an attempt to identify potential peptide-based affinity labels for opioid receptors, endomorphin-2 (Tyr-Pro-Phe-PheNH2), a potent and selective endogenous ligand for mu-opioid receptors, was chosen as the parent peptide for modification. The tetrapeptide analogs were prepared using standard Fmoc-solid phase peptide synthesis in conjunction with incorporation of Fmoc-Phe(p-NHAlloc) and modification of the p-amino group. The electrophilic groups isothiocyanate and bromoacetamide were introduced into the para position on either Phe3 or Phe4; the corresponding free amine-containing peptides were also prepared for comparison. The peptides bearing an affinity label group and their free amine analogs were evaluated in a radioligand-binding assay using Chinese hamster ovary (CHO) cells expressing mu- and delta-opioid receptors. Modification on Phe4 was better tolerated than on Phe3 for mu-receptor binding. Among the analogs tested, [Phe(p-NH2)4]endomorphin-2 showed the highest affinity (IC50 = 37 nm) for mu-receptors. The Phe(p-NHCOCH2Br)4 analog displayed the highest mu-receptor affinity (IC50 = 158 nm) among the peptides containing an affinity label group. Most of the compounds exhibited negligible binding affinity for delta-receptors, similar to the parent peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call