Abstract

Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

Highlights

  • Steel has become an important part of daily operations in the petroleum and gas pipeline industries.Hydrochloric acid (HCl) is widely used in industry for oil-well acidizing, acid descaling of boilers, acid cleaning, pickling, cooling towers, and heat exchangers to remove deposits and other corrosion products

  • The iodine was separated during the reaction by precipitation and the oleic acid-coated magnetite was produced after precipitation in basic aqueous media in the presence of oleic acid as stabilizer

  • We evaluated the effect of PAMPS-Na-co-St coating on the chemical stability of magnetite toward HCl acid

Read more

Summary

Introduction

Steel has become an important part of daily operations in the petroleum and gas pipeline industries.Hydrochloric acid (HCl) is widely used in industry for oil-well acidizing, acid descaling of boilers, acid cleaning, pickling, cooling towers, and heat exchangers to remove deposits and other corrosion products. Steel has become an important part of daily operations in the petroleum and gas pipeline industries. In the past few years, many efforts have been focused on the fabrication of metal oxide nanoparticles as corrosion inhibitors due to their unique chemical and physical properties [1,2,3,4]. One of the most effective routes to protect low-carbon steels against corrosion consists in the formation of self-organized oxide coatings to provide additional protection against corrosion. Nanosized fillers have attracted great attention in industrial applications, due to the superior properties they exhibit, even at low concentrations, such as strength, mechanical stability and barrier film compactness. Among the many materials used for this purpose, iron oxides, besides being cheap, seem to satisfy the requirements for anticorrosive protection; an example of these pigments is magnetite and magnetite coatings (MC) play an important role in corrosion protection. Among the many materials used for this purpose, iron oxides, besides being cheap, seem to satisfy the requirements for anticorrosive protection; an example of these pigments is magnetite and magnetite coatings (MC) play an important role in corrosion protection. [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.