Abstract

Gel plugging agents have become one of the preferred methods for plugging in complex and severe loss conditions during drilling due to their good adaptability to loss channels. To address the common issue of poor temperature resistance in gel-based plugging agents, high-temperature-resistant gel plugging materials were synthesized through the molecular design of polymers, modifying existing agents. Based on the temperature and salt resistance of the aqueous solution of an acrylamide (AM)/N-vinylpyrrolidone (NVP) binary copolymer, temperature-resistant monomer sodium styrene sulfonate (SSS) was introduced and reacted in a polyvinyl alcohol (PVA) aqueous solution. Using ammonium persulfate (APS) as an initiator and crosslinking with N,N-methylenebisacrylamide (MBA), a gel plugging material resistant to 140 °C was synthesized. The structure, thermal stability, water absorption and expansion, and plugging performance of the gel were studied through hot rolling aging, thermogravimetric analysis, infrared spectroscopy, electron microscopy scanning, sand bed experiments, and drag reduction experiments. The results show that the gel material has good thermal stability and water absorption and expansion at 140 °C, and its temperature-resistant plugging performance is excellent, significantly slowing down the loss rate of drilling fluid. This provides a basis for the further development of gel materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.