Abstract
The synthesis of a series of chiral nonracemic and C2-symmetric 2,2'-bipyridyl ligands (R = Me, i-Pr and Ph) as well as the syntheses of the corresponding unsymmetric 2,2'-bipyridyl ligands (R = Me and Ph) is described. These bipyridyl ligands were prepared, in a notably direct and modular fashion, from the readily available and corresponding 2-chloropyridine acetals (R = Me, i-Pr and Ph). The bipyridyl ligands were evaluated in copper(I)-catalyzed cyclopropanation reactions of styrene with the ethyl and t-butyl esters of diazoacetic acid. The stereoselectivities, as well as the yields of the cyclopropanation reactions, were dependant on the ratio of the bipyridyl ligands and copper triflate that was employed. The best result was obtained in the asymmetric cyclopropanation reaction of styrene and tert-butyl diazoacetate with the C2-symmetric bipyridyl ligand (R = i-Pr). This afforded the corresponding trans-cyclopropane in good diastereoselectivity (4 : 1) and in moderate enantioselectivity (44% ee). The X-ray structure determination of a complex formed between the C2-symmetric 2,2'-bipyridyl ligand (R = Ph) and copper(I) chloride showed that two bipyridyl ligands had coordinated to the copper(I) ion. This information, along with the results of a series of cyclopropanation reactions and NMR data, led to the conclusion that the 2,2'-bipyridyl ligands had the propensity to form catalytically inactive bis-ligated copper(I) species in solution that were in equilibrium with catalytically active copper(i) triflate and the desired mono-ligated copper(I) species. Moreover, it was observed that the complex of the bipyridyl ligand (R = Ph) and copper(I) chloride had a particularly large optical rotation (sodium D-line). The maximum positive optical rotation was subsequently found to be +1.1 x 10(4) at 304 nm and the maximum negative optical rotation was -1.3 x 10(4) at 329 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.