Abstract

A series of new 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones 6–13 bearing the cyclic diamine in the position 3 of the indole ring was synthesized. The majority of new compounds demonstrated a superior cytotoxicity than doxorubicin against a panel of mammalian tumor cells with determinants of altered drug response, that is, Pgp expression or p53 inactivation. For naphtho[2,3-f]indole-5,10-diones 6–9 bearing 3-aminopyrrolidine in the side chains, the ability to bind double-stranded DNA and inhibit topoisomerases 1 and 2 mediated relaxation of supercoiled DNA were demonstrated. Only one isomer, (R)-4,11-dihydroxy-3-((pyrrolidin-3-ylamino)methyl)-1H-naphtho[2,3-f]indole-5,10-dione (7) induced the formation of specific DNA cleavage products similar to the known topoisomerase 1 inhibitors camptothecin and indenoisoquinoline MJ–III–65, suggesting a role of the structure of the side chain of 3-aminomethylnaphtho[2,3-f]indole-5,10-diones in interaction with the target. Compound 7 demonstrated an antitumor activity in mice with P388 leukemia transplants whereas its enantiomer 6 was inactive. Thus, 3-aminomethyl derivatives of 4,11-dihydroxynaphtho[2,3-f]indole-5,10-dione emerge as a new prospective chemotype for the search of antitumor agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call